A linear regression model for imprecise response
نویسندگان
چکیده
A linear regression model with imprecise response and p real explanatory variables is analyzed. The imprecision of the response variable is functionally described by means of certain kinds of fuzzy sets, the LR fuzzy sets. The LR fuzzy random variables are introduced to model usual random experiments when the characteristic observed on each result can be described with fuzzy numbers of a particular class, determined by 3 random values: the center, the left spread and the right spread. In fact, these constitute a natural generalization of the interval data. To deal with the estimation problem the space of the LR fuzzy numbers is proved to be isometric to a closed and convex cone of R with respect to a generalization of the most used metric for LR fuzzy numbers. The expression of the estimators in terms of moments is established, their limit distribution and asymptotic properties are analyzed and applied to the determination of confidence regions and hypothesis testing procedures. The results are illustrated by means of some case-studies. 2010 Elsevier Inc. All rights reserved.
منابع مشابه
A WEIGHTED LINEAR REGRESSION MODEL FOR IMPERCISE RESPONSE
A weighted linear regression model with impercise response and p-real explanatory variables is analyzed. The LR fuzzy random variable is introduced and a metric is suggested for coping with this kind of variables. A least square solution for estimating the parameters of the model is derived. The result are illustrated by the means of some case studies.
متن کاملNon-discretionary imprecise data in efficiency Measurement
This paper introduces discretionary imprecise data in Data Envelopment Analysis (DEA) and discusses the efficiency evaluation of Decision Making Units (DMUs) with non-discretionary imprecise data. Then, suggests a method for evaluation the efficiency of DMUs with non-discretionary imprecise data. When some inputs and outputs are imprecise and non-discretionary, the DEA model becomes non-linear ...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملRelation Between Imprecise DESA and MOLP Methods
It is generally accepted that Data Envelopment Analysis (DEA) is a method for indicating efficiency. The DEA method has many applications in the field of calculating the relative efficiency of Decision Making Units (DMU) in explicit input-output environments. Regarding imprecise data, several definitions of efficiency can be found. The aim of our work is showing an equivalence relation between ...
متن کاملAPPLICATION OF DEA FOR SELECTING MOST EFFICIENT INFORMATION SYSTEM PROJECT WITH IMPRECISE DATA
The selection of best Information System (IS) project from many competing proposals is a critical business activity which is very helpful to all organizations. While previous IS project selection methods are useful but have restricted application because they handle only cases with precise data. Indeed, these methods are based on precise data with less emphasis on imprecise data. This paper pro...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Approx. Reasoning
دوره 51 شماره
صفحات -
تاریخ انتشار 2010